Carbon Nanotubes as Catalyst Support

Jun Yang, Jun Ma

Hyperion Catalysis International, Inc. 38 Smith Place, Cambridge, MA 02138

Outline

- Background
- Physical Properties of Hyperion FIBRILTM Nanotubes
- Functionalization of Carbon Nanotubes
- Preparation of Rigid Porous Carbon Nanotube Granules
- Application of FIBRIL Nanotubes as Catalyst Support
- Summary

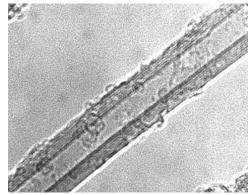
Background

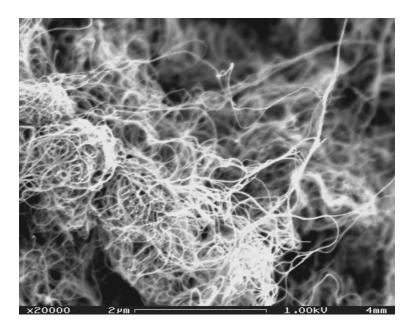
Activated Carbon as Catalyst Support

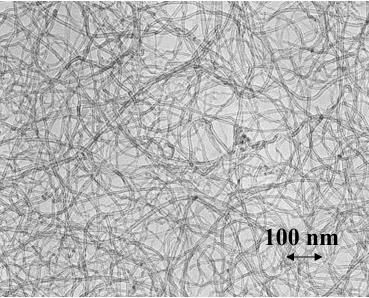
- Advantages:
 - Resistance to acid/basic media
 - Possibility to control porosity and surface chemistry
 - Chemical inertness
 - Easy recovery of precious metal
 - Large specific surface area, easy to obtain.
- Disadvantages:
 - Narrow microporosity (< 2nm)
 - Derived from natural resources → inconsistent quality, traces of impurities
 - Low mechanical and thermal stability

Carbon Nanotubes(CNTs) as Catalyst Support

- Compared to activated carbons:
 - Mesoporosity (2-50nm) → improves mass transfer
 - High purity \rightarrow avoids self-poisoning
 - Consistent material
 - High mechanical and thermal stability


CNTs as Catalyst Support (cont.)


- Challenges:
 - Controlling surface chemistry of CNTs → functionalization of CNTs
 - Increasing mechanical strength of CNT aggregates → preparation of rigid porous CNT granules
 - Maintaining the unique properties of CNTs, especially the mesoporosity


Physical Properties of Hyperion FIBRIL Nanotubes

 Morphology of as-made Hyperion FIBRIL Nanotubes

OD: 8-15nm, Length: $1-100\mu m$

Porosity of as-made Hyperion FIBRIL Nanotubes

BET (m²/g) —	Pore Volume (cm ³ /g)		
	Micro-	Meso-	
240	0.03	2.01	

Measured by N_2 adsorption at 77K

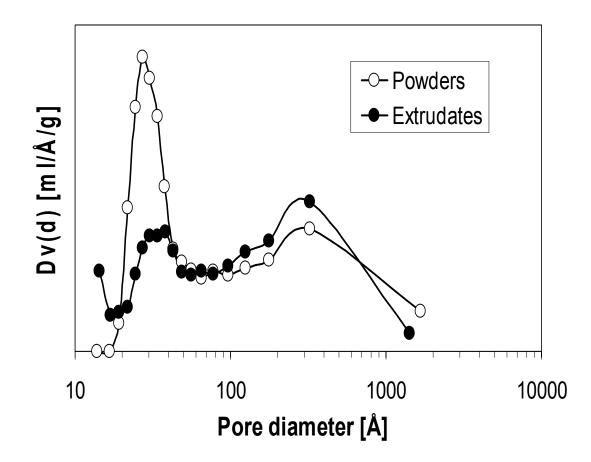
Functionalization of CNTs

Oxidant	Nitric Acid	(NH ₄) ₂ S ₂ O ₈ / H ₂ SO ₄	H ₂ O ₂ -WO ₃	H ₂ O ₂
Titer (meqv/g)	1.01	0.76	0.38	0.16

Preparation of Rigid Porous CNTs Granules

- Methods:
 - Direct extrusion of functionalized CNTs
 - Extrusion with addition of binder
- Crush Strength: 1/8" OD cylinder

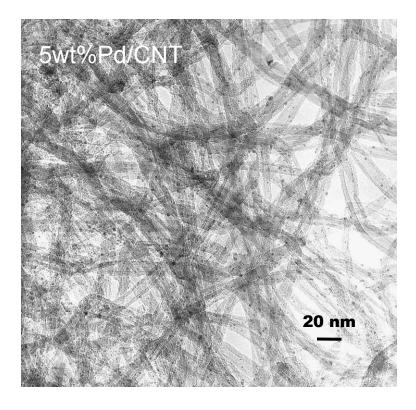
Extrusion	Direct	With binder
Crush strength (Ib/in)	38.9	61.3

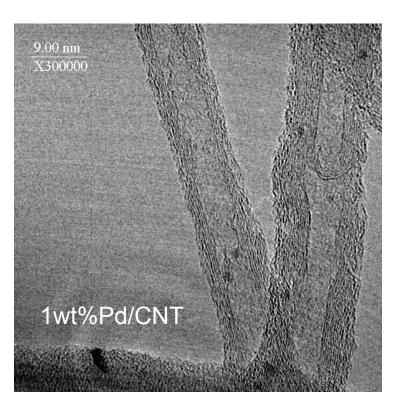

 Photograph of FIBRIL Nanotube Powders and Extrudates

Pore Volume

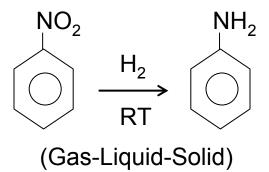
Sample	Binder residue	Surface area	Micropore volume	Mesopore volume
	(wt%)	(m²/g)	(cm ³ /g)	(cm ³ /g)
Powders	0	240	0.03	2.01
Extrudates	1.7	244	0.01	1.40

- Porosity of Extrudates with Addition of Binder
 - Pore size distribution

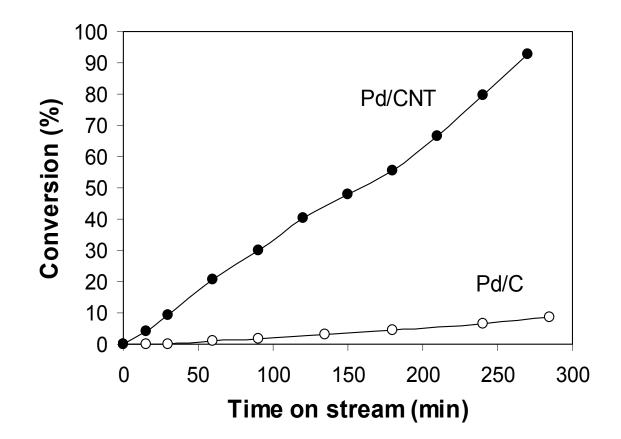

Application as Catalyst Support


CNT Supported Pd Catalysts[#]

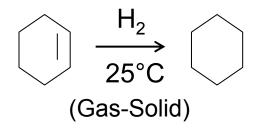
Loading (wt%)	Dispersion* (%)	Particle size* (nm)
20	19.9	5.6
5	44.6	2.5
3	51.6	2.2
1	59.6	1.9
0.5	57.8	1.9
0.2	55.6	2.0


- #: prepared by impregnation
- *: apparent Pd dispersions and particle size were measured by CO chemisorption at RT, and assuming CO:Pd=1

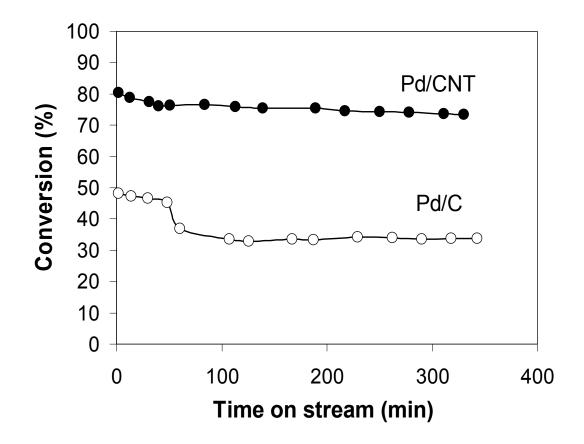
TEM of Pd/CNT Catalysts



Comparison of CNT with Activated Carbon as Support


Support	Activated Carbon	CNT
Functionalization	HNO ₃	HNO ₃
Titer (meqv/g)	2.15	1.01
Pd Loading (wt%)	5	5
Pd Dispersion (%)	25.8	44.6
Pd Particle Size (nm)	4.3	2.5
Granule Size (µm)	150-300	150-300

Hydrogenation of Nitrobenzene


50mg of catalyst in 100ml of 5vol% nitrobenzene/2-propanol solution

Comparison of Pd/CNT with Commercial Pd/C Catalyst

Catalyst	Pd/C (PMC)	Pd/CNT
Appearance	Granules	Pellets
Pd Loading (wt%)	0.5	0.5
Pd Dispersion (%)	54.3	58.5
Pd Particle Size (nm)	2.1	1.9
Granule Size (μm)	420-840	420-840

• Hydrogenation of Cyclohexene

Summary

- Successfully demonstrate . . .
 - Control of surface chemistry by CNT functionalization
 - Preparation of rigid porous CNT granules
 - Conservation of CNT mesoporosity in extrudates
- FIBRIL nanotubes are promising as catalyst support