

52nd IWCS/FOCUS

Carbon Multiwall Nanotubes A Possible Additive for Conductive or Flame Retardant Use in Wire and Cable

Patrick Collins Hyperion Catalysis International, Inc.

Structure of a FIBRILTM Nanotube A unique carbon structure

- Graphitic wall structure
- Multilayer
- Hollow

Images are Copyright © 2000 [™] FIBRIL is a trademark of Hyperion Catalysis International, Inc.

Structure of FIBRIL Nanotubes FIBRIL nanotubes form excellent networks

- Curvilinear rather than perfectly straight
- Approx. length (L): 10,000 nm
- Approx. diameter (D): 10 nm
- Aspect Ratio: L/D = 1000

Image is Copyright © 2000

Comparison with Carbon Black Nanotubes are significantly different

- Nanotubes have a higher aspect ratio
- Nanotubes are more inert and more chemically pure

Images are Copyright © 2000

One long nanotube winds it's way through the image.

Comparison with Carbon Fiber Nanotubes are significantly different

Images are Copyright © 2000

 Nanotubes are 1000 times smaller and have a higher aspect ratio

 Nanotubes have no sizing or coupling agents to compromise purity

Effect of Aspect Ratio on Loading High aspect ratio = low loading for conductivity

Nanotubes as Conductive Additive 2% in Polycarbonate Gives ESD Conductivity

Polycarbonate Percolation Curve

Volume Resistivity

% Fibril Loading

Conductive Additive Comparison Study done by CRIF in Belgium in PC/ABS

- Carbon Black
- Carbon Fiber
- Carbon Nanotubes

CENTRE DE RECHERCHES SCIENTIFIQUES ET TECHNIQUES DE L'INDUSTRIE DES FABRICATIONS METALLIQUES

CRIF

Commercial PC/ABS Compounds Formulated To Similar Level Of Surface Resistivity

		Volume	Surface
	Loading	Resistivity	Resistivity
Additive	wt%	(ohm-cm)	(ohms)
None		10 ¹⁶	n.a.
Nanotubes	7.3	10 ¹ - 10 ³	10 ⁴ - 10 ⁶
Carbon Black	16.7	10^{3}	10 ⁶
Carbon Fiber	13.7	10^{3}	10 ⁶

Additive Effect on Ductility Nanotubes Give Least Reduction In Ductility

		Elongation	Un-Notched
Additivo	Loading	at Break	Izod (ft lbs)
Additive	VV L/0	(70)	
None		100	NB
Nanotubes	7.3	10+	30
Carbon Black	16.7	3	10
Carbon Fiber	13.7	1 - 3	4

Additive Effect on Part Surface Nanotubes Give Smoothest Part Surface

Additive Effect on Resin Viscosity Nanotubes Have Least Effect on Viscosity

Nanotubes in Plastics

Summary of Resin Physical Properties Benefits

- Low loading
 - Preserves more of base resin properties such as toughness
 - Minimal effect on resin viscosity
- Small size
 - Excellent part surface quality
 - Highly isotropic distribution within part
- Lower risk of particle contamination
 - Less sloughing
 - Less abrasion
- Lower risk of vapor contamination – Less outgassing

FIBRIL Nanotubes in Plastics Multiple conductive applications commercialized

Automotive

- Fuel Lines
- Painted Body Panels and Hardware

Electronics

- Semiconductor Processing Equipment
- Hard Disc Drive
 Manufacturing
- Clean Room Equipment
- ESD Shipping Trays

Most Plastics Are Combustible Multiple hazards from burning plastics

- Heat release
- Dense smoke
- Toxic gasses

Several Types of Flame Retardants

- Heat Absorbers: decompose to liberate cooling water
- Flame Quenchers: interrupt chemical reactions in the flame
- **Synergists**: enhance performance of flame quenchers
- Char Formers: provide an insulating layer against heat and choke off fuel source
 - Char Reinforcers: preserve structural integrity of char

Measuring FR Performance Cone calorimeters are widely used

Heat release rate is single most important variable in a fire and can be viewed as the driving force of the fire.

Structure of FIBRIL Nanotubes FIBRIL nanotubes form excellent networks

- Curvilinear rather than perfectly straight
- Approx. length (L): 10,000 nm
- Approx. diameter (D): 10 nm
- Aspect Ratio: L/D = 1000

Image is Copyright © 2000

Nanotubes / Nanoclays in EVA

- Nanotubes lower peak heat release rate (PHRR) better then nanoclays
- Nanotubes + nanoclays synergistically reduce PHRR

CMWNT wt. %	Nanoclay wt. %	Peak Heat Release Rate kW/m ²
0	0	580
0	2.4	530
0	4.8	470
2.4	0	520
4.8	0	405
2.4	2.4	370

Beyer G., Fire and Materials, 2002; 26: 291-293

Nanotubes / Nanoclays in EVA

Beyer G., Fire and Materials, 2002; 26: 291-293

Nanotubes as an FR in EVA Mechanism may be char reinforcement, especially in mixed system

Beyer G., Fire and Materials, 2002; 26: 291-293

Nanotubes as an FR in PP

Peak heat release rate greatly reduced

Several possible reasons suggested, but exact mechanism not yet confirmed

- Iron in catalyst used to grow nanotubes may be acting as the FR
- Char reinforcement by nanotubes discounted in this resin

T. Kashiwagi, Macromol. Rapid Commun. 2002; 23, 761-765

CMWNT FR Benefit Overview

- Non-Halogenated
 - Environmental improvement
 - Regulatory driven, especially in EU
- Low Loadings
 - Preserves base resin properties
 - Minimizes viscosity increase
 - Maintains flexibility, toughness
 - Preserves formulation versatility
 - FR possible with or without electrical conductivity

FIBRIL Nanotubes as an FR in Plastics EVA masterbatch let down into EVA and PE

- Peak Heat Release (PHR) rate reduced by FIBRIL nanotubes in both EVA and PE
- Nanoclays, and blends of nanoclays with FIBRIL nanotubes, work in polar EVA but not in non-polar PE

Beyer G., Presentation at 2003 BCC Conference on Flame Retardants

Hyperion EVA Masterbatch in EVA

Beyer G., Presentation at 2003 BCC Conference on Flame Retardants

Hyperion EVA Masterbatch in PE

Beyer G., Presentation at 2003 BCC Conference on Flame Retardants